7,382 research outputs found

    Evaluation tests of platinum resistance thermometers for a cryogenic wind tunnel application

    Get PDF
    Thirty-one commercially designed platinum resistance thermometers were evaluated for applicability to stagnation temperature measurements between -190 C and +65 C in the Langley Research Center's National Transonic Facility. Evaluation tests included X-ray shadowgraphs, calibrations before and after aging, and time constant measurements. Two wire-wound low thermal mass probes of a conventional design were chosen as most suitable for this cryogenic wind tunnel application

    Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo

    Get PDF
    Neutrophil recruitment from blood to extravascular sites of sterile or infectious tissue damage is a hallmark of early innate immune responses, and the molecular events leading to cell exit from the bloodstream have been well defined1,2. Once outside the vessel, individual neutrophils often show extremely coordinated chemotaxis and cluster formation reminiscent of the swarming behaviour of insects3,4,5,6,7,8,9,10,11. The molecular players that direct this response at the single-cell and population levels within the complexity of an inflamed tissue are unknown. Using two-photon intravital microscopy in mouse models of sterile injury and infection, we show a critical role for intercellular signal relay among neutrophils mediated by the lipid leukotriene B4, which acutely amplifies local cell death signals to enhance the radius of highly directed interstitial neutrophil recruitment. Integrin receptors are dispensable for long-distance migration12, but have a previously unappreciated role in maintaining dense cellular clusters when congregating neutrophils rearrange the collagenous fibre network of the dermis to form a collagen-free zone at the wound centre. In this newly formed environment, integrins, in concert with neutrophil-derived leukotriene B4 and other chemoattractants, promote local neutrophil interaction while forming a tight wound seal. This wound seal has borders that cease to grow in kinetic concert with late recruitment of monocytes and macrophages at the edge of the displaced collagen fibres. Together, these data provide an initial molecular map of the factors that contribute to neutrophil swarming in the extravascular space of a damaged tissue. They reveal how local events are propagated over large-range distances, and how auto-signalling produces coordinated, self-organized neutrophil-swarming behaviour that isolates the wound or infectious site from surrounding viable tissue

    Continuous volumetric imaging via an optical phase-locked ultrasound lens

    No full text
    In vivo imaging at high spatiotemporal resolution is key to the understanding of complex biological systems. We integrated an optical phase-locked ultrasound lens into a two-photon fluorescence microscope and achieved microsecond-scale axial scanning, thus enabling volumetric imaging at tens of hertz. We applied this system to multicolor volumetric imaging of processes sensitive to motion artifacts, including calcium dynamics in behaving mouse brain and transient morphology changes and trafficking of immune cells

    Applying Theory of Constraints to Timber Harvesting: A Case Study from the Northeast USA

    Get PDF
    Logging firms are a critical link in wood supply chains, connecting forest landowners with markets for wood products. Improving operational planning can benefit individual logging firms as well as the larger wood supply chain in which they operate. Applying concepts from Theory of Constraints (TOC) to timber harvesting may help achieve greater predictability and efficiency when planning harvest operations. However, examples that demonstrate how TOC can improve logging operations are lacking. This study focuses on the analysis of production and activity data collected during the harvest of a temperate mixed hardwood forest in the Northeast United States using a chainsaw-forwarder system through a TOC lens. Specifically, the drum-buffer-rope (DBR) method was used to reschedule operator and machine activities such that a consistent flow of wood from stump to landing was maintained despite anticipated production setbacks. The results of this case study provide insights into the usefulness of applying TOC to logging operations. In particular, logging businesses must be able to estimate machine and operator productivity within a given harvest context to identify and exploit system constraints, while taking full advantage of unused capacity of any non-constraint functions

    Protein Antigens Increase the Protective Efficacy of a Capsule-Based Vaccine against Staphylococcus aureus in a Rat Model of Osteomyelitis

    Get PDF
    Staphylococcus aureus is an invasive bacterial pathogen, and antibiotic resistance has impeded adequate control of infections caused by this microbe. Moreover, efforts to prevent human infections with single-component S. aureus vaccines have failed. In this study, we evaluated the protective efficacy in rats of vaccines containing both S. aureus capsular polysaccharides (CPs) and proteins. The serotypes 5 CP (CP5) and 8 CP (CP8) were conjugated to tetanus toxoid and administered to rats alone or together with domain A of clumping factor A (ClfA) or genetically detoxified alpha-toxin (dHla). The vaccines were delivered according to a preventive or a therapeutic regimen, and their protective efficacy was evaluated in a rat model of osteomyelitis. Addition of dHla (but not ClfA) to the CP5 or CP8 vaccine induced reductions in bacterial load and bone morphological changes compared with immunization with either conjugate vaccine alone. Both the prophylactic and therapeutic regimens were protective. Immunization with dHla together with a pneumococcal conjugate vaccine used as a control did not reduce staphylococcal osteomyelitis. The emergence of unencapsulated or small-colony variants during infection was negligible and similar for all of the vaccine groups. In conclusion, addition of dHla to a CP5 or CP8 conjugate vaccine enhanced its efficacy against S. aureus osteomyelitis, indicating that the inclusion of multiple antigens will likely enhance the efficacy of vaccines against both chronic and acute forms of staphylococcal disease.Fil: Lattar, Santiago Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Noto Llana, Mariangeles. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Denoël, Philippe. GlaxoSmithKline Vaccines; BélgicaFil: Germain, Sophie. GlaxoSmithKline Vaccines; BélgicaFil: Buzzola, Fernanda Roxana. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; ArgentinaFil: Lee, Jean C.. Harvard Medical School; Estados UnidosFil: Sordelli, Daniel Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Investigaciones en Microbiología y Parasitología Médica. Universidad de Buenos Aires. Facultad de Medicina. Instituto de Investigaciones en Microbiología y Parasitología Médica; Argentin

    Differential Dynamic Microscopy to characterize Brownian motion and bacteria motility

    Full text link
    We have developed a lab work module where we teach undergraduate students how to quantify the dynamics of a suspension of microscopic particles, measuring and analyzing the motion of those particles at the individual level or as a group. Differential Dynamic Microscopy (DDM) is a relatively recent technique that precisely does that and constitutes an alternative method to more classical techniques such as dynamics light scattering (DLS) or video particle tracking (VPT). DDM consists in imaging a particle dispersion with a standard light microscope and a camera. The image analysis requires the students to code and relies on digital Fourier transform to obtain the intermediate scattering function, an autocorrelation function that characterizes the dynamics of the dispersion. We first illustrate DDM on the textbook case of colloids where we measure the diffusion coefficient. Then we show that DDM is a pertinent tool to characterize biologic systems such as motile bacteria i.e.bacteria that can self propel, where we not only determine the diffusion coefficient but also the velocity and the fraction of motile bacteria. Finally, so that our paper can be used as a tutorial to the DDM technique, we have joined to this article movies of the colloidal and bacterial suspensions and the DDM algorithm in both Matlab and Python to analyze the movies

    Utility-based Reinforcement Learning for Reactive Grids

    Get PDF
    International audienceLarge scale production grids are an important case for autonomic computing. They follow a mutualization paradigm: decision-making (human or automatic) is distributed and largely independent, and, at the same time, it must implement the highlevel goals of the grid management. This paper deals with the scheduling problem with two partially conflicting goals: fairshare and Quality of Service (QoS). Fair sharing is a wellknown issue motivated by return on investment for participating institutions. Differentiated QoS has emerged as an important and unexpected requirement in the current usage of production grids. In the framework of the EGEE grid (one of the largest existing grids), applications from diverse scientific communities require a pseudo-interactive response time. More generally, seamless integration of the grid power into everyday use calls for unplanned and interactive access to grid resources, which defines reactive grids. The major result of this paper is that the combination of utility functions and reinforcement learning (RL) provides a general and efficient method for dynamically allocating grid resources in order to satisfy both end users with differentiated requirements and participating institutions. Combining RL methods and utility functions for resource allocation was pioneered by Tesauro and Vengerov. While the application contexts are different, the resource allocation issues are very similar. The main difference in our work is that we consider a multi-criteria optimization problem that includes a fair-share objective. A first contribution of our work is the definition of a set of variables describing states and actions that allows us to formulate the grid scheduling problem as a continuous action-state space reinforcement learning problem. To capture the immediate goals of end users and the long-term objectives of administrators, we propose automatically derived utility functions. Finally, our experimental results on a synthetic workload and a real EGEE trace show that RL clearly outperforms the classical schedulers, so it is a realistic alternative to empirical scheduler design
    corecore